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CHARACTERISTIC MATRICES OF CELLULAR

AUTOMATA WITH RULE 60 AND INTERMEDIATE

BOUNDARY CONDITION

Jae-Gyeom Kim*

Abstract. We investigate periodicities of characteristic matrices
of cellular automata configured with rule 60 and intermediate bound-
ary condition.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since
the concept of cellular automata first introduced by John Von Neumann
in the 1950’s. And some researchers have studied on cellular automata
with intermediate boundary condition [1,2,4,5,7].

In this note, we will investigate periodicities of characteristic matrices
of cellular automata configured with rule 60 and intermediate boundary
condition.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present states of its k
neighbors for a k-neighborhood CA. For a 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i − 1)th, (i)th, and (i + 1)th cells as: xi(t + 1) =
f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational logic.
For such a CA, the modulo-2 logic is always applied.
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For a 2-state 3-neighborhood CA there are 23 distinct neighborhood

configurations and 22
3

distinct mappings from all these neighborhood
configurations to the next states, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from the neighborhood configurations to the next states as;

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 .

The rule name 60 comes from that 00111100 in binary system is 60 in
decimal system. The corresponding combinational logic of rule 60 is

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), intermediate (where the 2nd right cell of the leftmost
cell of a 3-neighborhood CA is assumed to be the left neighbor of the
leftmost cell of the CA and the 2nd left cell of the rightmost cell of
the CA is assumed to be the right neighbor of the rightmost cell of the
CA), periodic (where extreme cells are adjacent), etc. If in a CA the
neighborhood dependence is only XOR logic, then it is called a noncom-
plemented CA. And the number of cells of a CA is called the length of
a CA.

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of a linear CA is given by ft+1(x) = T×ft(x),
where ft(x) is the current state and t is the time step. If all the states of
the CA form a single or multiple cycles, then it is referred to as a group
CA.

Lemma 2.1 ([3]). A noncomplemented CA is a group CA if and only
if Tm = I where T is the characteristic matrix of the CA, I is the identity
matrix and m is a positive integer.

Lemma 2.2 ([6]). Let H be a unform CA of length n configured with
rule 60 and null boundary condition. If 2t−1 < n ≤ 2t for some positive
integer t, then the group order of H is 2t.
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3. Characteristic matrices of cellular automata

In this section, we deal with characteristic matrices of uniform CA
configured with rule 60 and intermediate boundary condition. Such a
matrix T of the CA is given by

Ti,j =


1, if i = j or i = j + 1,

1, if i = 1 and j = 3,

0, otherwise

or T =



1 0 1
1 1 0

1 1
1 1

1 1
· ·
· ·
· ·


where all the values of the blank entries are zero. From now on, all the
values of the blank entries in matrix representation will always be zero
unless otherwise specified.

And we can have T 2, T 3, T 4, · · · as follows;

T 2 =



1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

· · ·
· · ·
· · ·


,

T 3 =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

· · · ·
· · · ·
· · · ·


,
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T 4 =



1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

· · · · ·
· · · · ·
· · · · ·


,

· · · .
Now we will consider submatrices of Tm for a positive integer m.

Let (Tm)L denote the matrix consists of the left 3 columns of Tm and
(Tm)R the matrix eliminating the left 3 columns from Tm. And let
(Tm)LU denote the matrix consists of the upper 3 rows of (Tm)L and
(Tm)LL the matrix eliminating the upper 3 rows from (Tm)L. Similarly,
let (Tm)RU denote the matrix consists of the upper 3 rows of (Tm)R and
(Tm)RL the matrix eliminating the upper 3 rows from (Tm)R. Then Tm

consists of 4 submatrices (Tm)LU , (Tm)LL, (Tm)RU and (Tm)RL. Here
we can easily know that (Tm)RU is always a zero matrix.

Lemma 3.1. Let T be the characteristic matrix of a uniform CA
of length n ≥ 3 configured with rule 60 and intermediate boundary
condition. If Tm+l = T l for some positive integers l and m, then m is a
multiple of 3.

Proof. By the above disscussion, we have

TLU =

 1 0 1
1 1 0
0 1 1

 , (T 2)LU =

 1 1 0
0 1 1
1 0 1

 ,

(T 3)LU =

 0 1 1
1 0 1
1 1 0

 , (T 4)LU =

 1 0 1
1 1 0
0 1 1

 ,

and for each positive integer t the values of (T t)LU are depend only on
the values of (T r)LU ’s where 1 ≤ r ≤ t. So the sequence of TLU , (T 2)LU ,
(T 3)LU , · · · is the iteration of 3 matrices 1 0 1

1 1 0
0 1 1

 ,

 1 1 0
0 1 1
1 0 1

 ,

 0 1 1
1 0 1
1 1 0

 .
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Now let Tm+l = T l for some positive integers l and m. Then we have
(Tm+l)LU = (T l)LU . Thus we have the conclusion.

Through the proof of Lemma 3.1, we can also know that any uniform
CA of length n ≥ 3 configured with rule 60 and intermediate boundary
condition could not be a group CA by Lemma 2.1.

Lemma 3.2. Let S be the characteristic matrix of a unform CA of
length n with 2t−1 < n ≤ 2t for a positive integer t configured with
rule 60 and null boundary condition. Then, for a positive integer m,
Sm+1 = S if and only if m is a multiple of 2t.

Proof. If m is a multiple of 2t, then Sm = I by Lemma 2.2, and so we
have Sm+1 = S. Now let Sm+1 = S for some positive integer m. Then
Sm = I since S is invertible by Lemma 2.1 and Lemma 2.2. So m is a
multiple of 2t by Lemma 2.2 again.

Lemma 3.3. Let T be the characteristic matrix of a uniform CA of
length n with 3 + 2t−1 < n ≤ 3 + 2t for a positive integer t configured
with rule 60 and intermediate boundary condition. If Tm+1 = T for
some positive integer m, then m is a multiple of 2t.

Proof. Let Tm+1 = T for some positive integer m. Then m ≥ 3
by Lemma 3.1 and we have (Tm+1)RL = TRL clearly. Since (T l)RU is
always a zero matrix for all positive integers l, the values of (T s)RL for
every positive integer s are depend only on the values of (T r)RL’s where
1 ≤ r ≤ s. And there is no difference between intermediate boundary
condition and null boundary condition at the rightmost cell since rule
60 applies. Now let S be the characteristic matrix of a unform CA of
length n− 3 configured with rule 60 and null boundary condition. Then
TRL = S, and so (T l)RL = Sl for all positive integers l. Therefore we
have Sm+1 = S. Hence we have the conclusion by Lemma 3.2.

Theorem 3.4. Let T be the characteristic matrix of a uniform CA
of length n with 3 + 2t−1 < n ≤ 3 + 2t for a positive integer t configured
with rule 60 and intermediate boundary condition. If Tm+1 = T for
some positive integer m, then m is a multiple of 2t · 3.

Proof. It is an immediate consequence of Lemma 3.1 and 3.3.

In fact, we can check m = 2t ·3 for t = 1, 2, 3, 4 or 5 in Theorem 3.4 by

calculating T 7 = T 1+21·3, T 13 = T 1+22·3, T 25 = T 1+23·3, T 49 = T 1+24·3
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and T 97 = T 1+25·3, where T has a sufficiently large size, as follows;

T 7 =



1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0 · · ·
0 0 0 1 1 0
1 0 0 1 1 1

· · · · · ·


,

T 13 =



1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 · · ·
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 1 0 0 1 1

· · · · · ·


,

T 25 =



1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0 · · ·
0 0 1 1 0 0
0 0 0 1 1 0

· · · · · · · · ·
0 0 0 0 0 0 · · · 0 1 1 0 · · ·
1 0 0 1 0 0 · · · 0 0 1 1 · · ·

· · · · · · · · · · · ·

← (11)th row,

T 49 =



1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0 · · ·
0 0 1 1 0 0
0 0 0 1 1 0

· · · · · · · · ·
0 0 0 0 0 0 · · · 0 1 1 0 · · ·
1 0 0 1 0 0 · · · 0 0 1 1 · · ·

· · · · · · · · · · · ·

← (19)th row,
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T 97 =



1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0 · · ·
0 0 1 1 0 0
0 0 0 1 1 0

· · · · · · · · ·
0 0 0 0 0 0 · · · 0 1 1 0 · · ·
1 0 0 1 0 0 · · · 0 0 1 1 · · ·

· · · · · · · · · · · ·

← (35)th row.
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